
 3.5 Cloud file systems: GFS and HDFS, Comparisons among GFS and HDFS.

 ● The Google File System (GFS) is designed to manage relatively large files using a very large distributed
 cluster of commodity servers connected by a high-speed network.

 ● It is therefore designed to

 (a) expect and tolerate hardware failures, even during the reading or writing of an individual file
 (since files are expected to be very large) and

 (b) support parallel reads, writes and appends by multiple client programs. A common use case
 that is efficiently supported is that of many 'producers' appending to the same file in parallel, which
 is also being simultaneously read by many parallel 'consumers'.

 ● As a result they also do not scale as well as data organizations built on GFS-like platforms such as the
 Google Datastore.

 ● The Hadoop Dis- tributed File System (HDFS) is an open source implementation of the GFS architecture
 that is also available on the Amazon EC2 cloud platform; we refer to both GFS and HDFS as 'cloud file
 systems.'

 ● The architecture of cloud file systems is illustrated in Figure.

 ● Large files are broken up into 'chunks' (GFS) or 'blocks' (HDFS), which are themselves large (64MB being
 typical). These chunks are stored on commodity (Linux) servers called Chunk Servers (GFS) or Data Nodes
 (HDFS); further each chunk is replicated at least three times, both on a different physical rack as well as a
 different network segment in anticipation of possible failures of these components apart from server
 failures.

 ● When a client program ('Cloud Application') needs to read/write a file. It sends the full path and offer to the
 Master(GFS) which sends back meta-data for one (in the case of read) or all (in the case of write) of the
 replicas of the chunk where this data is to be found.

 ● The client caches such meta-data so that it need not contact the Master each time. Thereafter the client
 directly reads data from the designated chunk server; this data is not cached since most reads are large
 and caching would only complicate writes.

 ● In case of a write, in particular an append, the client sends only the data to be appended to all the chunk
 servers; when they all acknowledge receiving this data it informs a designated 'primary' chunk server,
 whose identity it receives (and also caches) from the Master.

 ● The primary chunk server appends its copy of data into the chunk at an offset of its choice; note that this
 may be beyond the EOF to account for multiple writers who may be appending to this file simultaneously.
 The primary then forwards the request to all other replicas which in turn write the data at the same offset if
 possible or return a failure. In case of a failure the primary rewrites the data at possibly another offset and
 retries the process.

 ● The Master maintains regular contact with each chunk server through heartbeat messages and in case it
 detects a failure its meta-data is updated to reflect this, and if required assigns a new primary for the
 chunks being served by a failed chunk server. Since clients cache meta-data, occasionally they will try to
 connect to failed chunk servers, in which case they update their meta-data from the master and retry.

 ● It is shown that this architecture efficiently supports multiple parallel readers and writers. It also supports
 writing (appending) and reading the same file by parallel sets of writers and readers while maintaining a
 consistent view, i.e. each reader always sees the same data regardless of the replica it happens to read
 from.

 ● Finally, note that computational processes (the 'client' applications above) run on the same set of servers
 that files are stored on. As a result, distributed programming systems, such as MapReduce, can often
 schedule tasks so that their data is found locally as far as possible, as illustrated by the Cluster system.

 GFS Architecture:

 1. There is single master in the whole cluster which stores metadata.
 2. Other nodes act as the chunk servers for storing data.
 3. The file system namespace and locking facilities are managed by master.
 4. The master periodically communicates with the chunk servers to collect management information

 and give instruction to chunk servers to do work such as load balancing or fail recovery.
 5. With a single master, many complicated distributed algorithms can be avoided and the design of

 the system can be simplified.
 6. The single GFS master could be the performance bottleneck and single point of failure.
 7. To mitigate this, Google uses a shadow master to replicate all the data on the master and the

 design guarantees that all data operations are transferred between the master and the clients and
 they can be cached for future use.

 8. With the current quality of commodity servers, the single master can handle a cluster more than
 1000 nodes.

 The features of Google file system are as follows:

 1. GFS was designed for high fault tolerance.
 2. Master and chunk servers can be restarted in a few seconds and with such a fast recovery

 capability, the window of time in which data is unavailable can be greatly reduced.
 3. Each chunk is replicated at least three places and can tolerate at least two data crashes for a

 single chunk of data.
 4. The shadow master handles the failure of the GFS master.
 5. For data integrity, GFS makes checksums on every 64KB block in each chunk.
 6. GFS can achieve the goals of high availability, high performance and implementation.
 7. It demonstrates how to support large scale processing workloads on commodity hardware

 designed to tolerate frequent component failures optimized for huge files that are mostly appended
 and read.

 HDFS Architecture:

 1. The Hadoop Distributed File System (HDFS) is designed to provide a fault-tolerant file system designed to
 run on commodity hardware. The primary objective of HDFS is to store data reliably even in the presence
 of failures including Name Node failures, Data Node failures and network partitions.

 2. HDFS uses a master/slave architecture in which one device (the master) controls one or more other
 devices (the slaves). The HDFS cluster consists of a single Name Node and a master server manages the
 file system namespace and regulates access to files.

 3. NameNode and DataNodes: The NameNode and DataNode are pieces of software designed to run on
 commodity machines. These machines typically run a GNU/Linux operating system (OS). HDFS is built
 using the Java language; any machine that supports Java can run the NameNode or the DataNode
 software.

 4. The File System Namespace: The file system namespace hierarchy is similar to most other existing file
 systems; one can create and remove files, move a file from one directory to another, or rename a file.
 HDFS does not yet implement user quotas.The NameNode maintains the file system namespace.

 5. Data Replication: HDFS is designed to reliably store very large files across machines in a large cluster. It
 stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The
 blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per
 file.

 6. Block: Generally the user data is stored in the files of HDFS. The file in a file system will be divided into
 one or more segments and/or stored in individual data nodes. These file segments are called as blocks. In
 other words, the minimum amount of data that HDFS can read or write is called a Block. The default block
 size is 64MB, but it can be increased as per the need to change in HDFS configuration.

 Features of HDFS

 1. Manages the files system manespare. Regulation clients access to files, It also execute file system
 operations such as naming, and opening files and directories data node.

 2. Fault detection and recovery : Since HDFS includes a large number of commodity hardware,
 failure of components is frequent. Therefore HDFS should have mechanism for quick and
 automatic fault detection and recovery.

 3. Huge data sets : HDFS should have hundreds of nodes per cluster to move the applications having
 huge data sets.

 4. Hardware at data : A requested tasks can be done efficiently, when the computation takes place
 near the data. Especially where huge data base are involved it reduces the network traffic and
 increase the through PD.

 Comparisons among GFS and HDFS:

